Regulation of fructose metabolism and polymer synthesis by Fusobacterium nucleatum ATCC 10953.
نویسندگان
چکیده
Energy for the anaerobic growth of Fusobacterium nucleatum ATCC 10953 can be derived from the fermentation of sugar (fructose) or amino acid (glutamate). During growth on fructose, the cells formed large intracellular granules which after extraction yielded glucose by either acid or enzymatic hydrolysis. The endogenous polymer was subsequently metabolized, and after overnight incubation of the cells in buffer, the glucan granules were no longer detectable by electron microscopy. Anaerobically, washed cells grown previously on fructose fermented this sugar to a mixture of lactic, acetic, and butyric acids, and little intracellular glucan was formed. Aerobically, the cells slowly metabolized fructose to acetate. Provision of glutamic acid as an additional energy (ATP) source elicited rapid synthesis of polymer by glycolyzing cells. Intracellular granules were not present in glutamate-grown cells, and under anaerobic conditions, the resting cells failed to metabolize [14C] fructose. However, the addition of glutamic acid to the suspension resulted in the rapid accumulation of sugar by the cells. Approximately 15% of the 14C-labeled material was extractable with boiling water, and by 31P nuclear magnetic resonance spectroscopy, this phosphorylated derivative was identified as [14C]fructose-1-phosphate. The nonextractable material represented [14C]glucan polymer. Fructose-1-phosphate kinase activity in fructose-grown cells was fivefold greater than that in glutamate-grown cells. We suggest that the activity of fructose-1-phosphate kinase and the availability of ATP regulate the flow of fructose into either the glycolytic or polymer-synthesizing pathway in F. nucleatum.
منابع مشابه
Genome Sequence of Fusobacterium nucleatum Subspecies Polymorphum — a Genetically Tractable Fusobacterium
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and anno...
متن کاملNative plasmids of Fusobacterium nucleatum: characterization and use in development of genetic systems.
Three native plasmids of Fusobacterium nucleatum were characterized, including DNA sequence analysis of one plasmid, pFN1. A shuttle plasmid, pHS17, capable of transforming Escherichia coli and F. nucleatum ATCC 10953 was constructed with pFN1. pHS17 was stably maintained in the F. nucleatum transformants, and differences in the transformation efficiencies suggested the presence of a restrictio...
متن کاملMurine Experimental Root Canal Infection: Cytokine Expression in Response to F. nucleatum and E. faecalis.
The aim of this study was to evaluate the gene expression of proinflammatory (RANKL, TNF-a and IFN-g) and regulatory (TGF-b and IL-10) cytokines as reaction to experimental infection by mono or bi-association of Fusobacterium nucleatum (ATCC 10953) and Enterococcus faecalis (ATCC 19433). F. nucleatum and E. faecalis, either in mono- or bi-association were inoculated into the root canal system (...
متن کاملAggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva.
Human oral bacterial pathogens grow in attached multispecies biofilm communities. Unattached cells are quickly removed by swallowing. Therefore, surface attachment is essential for growth, and we investigated multispecies community interactions resulting in mutualistic growth on saliva as the sole nutritional source. We used two model systems, saliva-coated transferable solid-phase polystyrene ...
متن کاملImpact of growth conditions on susceptibility of five microbial species to alkaline stress.
The effects of different growth conditions on the susceptibility of five taxa to alkaline stress were investigated. Enterococcus faecalis ATCC 29212, Streptococcus sobrinus OMZ 176, Candida albicans ATCC 90028, Actinomyces naeslundii ATCC 12104, and Fusobacterium nucleatum ATCC 10953 were grown as planktonic cells, allowed to adhere to dentin for 24 hours, grown as monospecies or multispecies b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 172 10 شماره
صفحات -
تاریخ انتشار 1990